Constructions of new matroids and designs over \mathbb{F}_q

Relinde Jurrius

Netherlands Defence Academy

Combinatorial Designs and Codes
July 15, 2021
Matroid: a pair \((E, r)\) with

- \(E\) finite set;
- \(r : 2^E \to \mathbb{N}_0\) a function, the rank function, with for all \(A, B \in E\):

 (r1) \(0 \leq r(A) \leq |A|\)
 (r2) If \(A \subseteq B\) then \(r(A) \leq r(B)\).
 (r3) \(r(A \cup B) + r(A \cap B) \leq r(A) + r(B)\) (semimodular)
Example

$$
\begin{pmatrix}
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0
\end{pmatrix}
$$

Example

But: most matroids don’t come from a matrix or graph.
Independent set: subset with rank equal to cardinality

Circuit: minimal dependent subset

Flat: subset such that adding an element increases the rank

Matroids are completely determined by their independent sets, circuits, and flats.
Example (Fano plane)

\[E = \{1, 2, 3, 4, 5, 6, 7\} \]

Independent sets:
\[\emptyset, \text{ points, pairs of points, } 3 \text{ points not on a line} \]

Flats:
\[\emptyset, \text{ points, lines, } E \]

Circuits:
\[\text{lines, 4 points with no 3 on a line} \]
A perfect matroid design (PMD) is a matroid where all flats of the same rank have the same size.

Example

- Finite projective space and its truncations
- Finite affine space and its truncations
- Steiner systems
- Triffids, coming from finite commutative Moufang loops
Theorem (Murty, Young, Edmonds, 1970)

Given a PMD, we can make the following designs:

- All flats of cardinality \(j \) form the set of blocks of a design.
- All independent sets of cardinality \(j \) form the set of blocks of a design.
- All circuits of cardinality \(j \) form the set of blocks of a design.
Example (Fano plane)

\[E = \{1, 2, 3, 4, 5, 6, 7\} \]

Independent sets:
\(\emptyset\), points, pairs of points,
3 points not on a line

Flats:
\(\emptyset\), points, lines, \(E\)

Circuits:
lines, 4 points with no 3 on a line
q-Analogues

<table>
<thead>
<tr>
<th>lattice</th>
<th>Boolean subspace lattice of \mathbb{F}_q^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>atom</td>
<td>element</td>
</tr>
<tr>
<td>height</td>
<td>1-dim subspace</td>
</tr>
<tr>
<td># atoms</td>
<td>size</td>
</tr>
<tr>
<td>meet \land</td>
<td>dimension</td>
</tr>
<tr>
<td>n</td>
<td>$\frac{q^n-1}{q-1}$</td>
</tr>
<tr>
<td>join \lor</td>
<td>intersection</td>
</tr>
<tr>
<td>union</td>
<td>sum</td>
</tr>
</tbody>
</table>

From q-analogue to ‘normal’: let $q \to 1$.
q-Matroid: a pair (E, r) with

- E finite dimensional vector space;
- $r : \{\text{subspaces of } E\} \rightarrow \mathbb{N}_0$ a function, the rank function, with for all $A, B \subseteq E$:

 (r1) $0 \leq r(A) \leq \dim A$

 (r2) If $A \subseteq B$ then $r(A) \leq r(B)$.

 (r3) $r(A + B) + r(A \cap B) \leq r(A) + r(B)$ (semimodular)
Theorem (J. & Pellikaan, 2018)
Every \(\mathbb{F}_{q^m} \)-linear rank metric code gives a \(q \)-matroid.

Proof.
Let \(E = \mathbb{F}_q^n \) and \(G \) be a generator matrix of the code.
Let \(A \subseteq E \) and \(Y \) a matrix whose columns span \(A \).

Then \(r(A) = \text{rk}(GY) \) satisfies the axioms (r1),(r2),(r3). \(\square \)
A q-PMD is a q-matroid where all flats of the same rank have the same dimension.

Example
All q-Steiner systems are q-PMD’s, where the blocks of the q-Steiner system are the maximal proper flats of the q-PMD.
Theorem (Byrne, Ceria, Ionica, J., Saçıkara, 2020)

Given a q-Steiner system and viewing it as a q-PMD, we can make the following subspace designs:

- All flats of dimension j form the set of blocks of a design.
- All independent spaces of dimension j form the set of blocks of a design.
- All circuits of dimension j form the set of blocks of a design.

Corollary

There exists a 2-$(13, 4, 5115; 2)$ design.
Theorem (Byrne, Ceria, Ionica, J., Saçıkara, 2020)

The subspace designs obtained from a q-Steiner system in the previous theorem have the same automorphism group as the q-Steiner system.

What we need: more q-Steiner systems!
Thank you for your attention!