An introduction to error-correcting codes and some current day applications

dr. Relinde Jurrius

University of Neuchâtel, Switzerland

December 20, 2016
Redundancy
encoding

message → codeword → channel → received word → message

decoding

noise
0 → 00000
1 → 11111
<table>
<thead>
<tr>
<th></th>
<th>→</th>
<th>00000</th>
<th></th>
<th>00000 ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>→</td>
<td>00000</td>
<td></td>
<td>00000 ?</td>
</tr>
<tr>
<td>1</td>
<td>→</td>
<td>11111</td>
<td></td>
<td>01100 ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10111 ?</td>
</tr>
</tbody>
</table>
0 → 00000
1 → 11111

00000 ? → 0
01100 ?
10111 ?
0 → 00000 00000 ? → 0
1 → 11111 01100 ? → 0

10111 ?
<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000</td>
<td>00000 ?</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>11111</td>
<td>01100 ?</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10111 ?</td>
<td>1</td>
</tr>
</tbody>
</table>
\begin{align*}
0 & \longrightarrow 00000 & 00000 \ ? & \longrightarrow 0 \\
1 & \longrightarrow 11111 & 01100 \ ? & \longrightarrow 0 \\
& & 10111 \ ? & \longrightarrow 1
\end{align*}

Redundancy: \(\frac{4}{5} \)
Richard Hamming
(1915–1998)

Bell Labs, ca. 1950
\begin{align*}
a & \quad b & \quad c & \quad d & \quad e & \quad f & \quad g \\
1 & \quad 0 & \quad 1 & \quad 1 & \quad 1 & \quad 1 & \quad 1
\end{align*}

Redundancy: 3
\(a \ b \ c \ d \ e \ f \ g \n1 \ 0 \ 1 \ 1 \)
\begin{align*}
\begin{array}{ccccccc}
 & a & b & c & d & e & f & g \\
1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
\end{array}
\end{align*}
Redundancy: $\frac{3}{7}$
a b c d e f g
1 0 0 1 0 0 1
\begin{align*}
a b c d e f g \\
1 & 0 & 0 & 1 & 0 & 0 & 1
\end{align*}
1001001 \rightarrow 1001101

1001101 \rightarrow 1001
Low redundancy

Large differences between codewords

Fast encoding / decoding
Distance function $d(x, y)$ is a *metric* if:

$$d(x, y) \geq 0 \text{ with equality iff } x = y$$

$$d(x, y) = d(y, x)$$

$$d(x, y) + d(y, z) \geq d(x, z)$$
Alphabet \mathcal{Q}

Length n

Hamming metric on \mathcal{Q}^n:

$$d(x, y) = \text{number of positions in which vectors differ}$$

$$= |\{ i \in [n] : x_i \neq y_i \}|$$

error-correcting code: $C \subseteq \mathcal{Q}^n$
minimum distance d error-correcting capacity $= \lfloor d - \frac{1}{2} \rfloor$
minimum distance d = $\lfloor d - \frac{1}{2} \rfloor$

error-correcting capacity e = $\lfloor \frac{d - 1}{2} \rfloor$
Linear code: \(C \subseteq \mathbb{F}_q^n \) subspace of dimension \(k \)

Generator matrix: rows generate \(C \)

Encoding: \(mG = c \)

Parity check matrix: \(C \) is kernel of this matrix

\(Hc^T = 0 \)
\[G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} \]

\[H = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \]
Typical problem:

Fix n and k (redundancy), make d as large as possible
Typical problem:

Fix \(n \) and \(k \) (redundancy), make \(d \) as large as possible.

Singleton bound: \(d \leq n - k + 1 \)

Equality: Maximum Distance Separable (MDS) code
Reed-Solomon code: pick $\alpha_1, \ldots, \alpha_n \in \mathbb{F}_q$

$$C = \{(f(\alpha_1), \ldots, f(\alpha_n)) : f \in \mathbb{F}_q[x], \deg f < k\}$$

$$G = \begin{pmatrix}
1 & 1 & \cdots & 1 & 1 \\
\alpha_1 & \alpha_2 & \cdots & \alpha_{n-1} & \alpha_n \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\alpha_1^{k-1} & \alpha_2^{k-1} & \cdots & \alpha_{n-1}^{k-1} & \alpha_n^{k-1}
\end{pmatrix}$$
Reed-Solomon code is MDS

Several fast decoding algorithms known

Needs large alphabet: $q > k$
Current day applications of error-correcting codes:

- Network coding

 Distributed storage

- Code-based crypto
Idea: send (rows of) matrices instead of vectors
Send: $X_1, \ldots, X_m \in \mathbb{F}_q^n$

Receive: $Y_1, \ldots, Y_m \in \mathbb{F}_q^n$

No errors: $Y = AX$

A full rank, known from the network structure
Send: $X_1, \ldots, X_m \in \mathbb{F}_q^n$

Receive: $Y_1, \ldots, Y_m \in \mathbb{F}_q^n$

No errors: $Y = AX$

A full rank, known from the network structure

In practice: $Y = A'X + Z$

A' rank erasures

Z errors
Send: $X_1, \ldots, X_m \in \mathbb{F}_q^n$
Receive: $Y_1, \ldots, Y_m \in \mathbb{F}_q^n$

No errors: $Y = AX$

A full rank, known from the network structure

In practice: $Y = A'X + Z$

A' rank erasures
Z errors

Decoding possible if $\text{rk}(A')$ not too small and $\text{rk}(Z)$ not too big.

Rank metric: $d(X, Y) = \text{rk}(X - Y)$
Depends on network structure

Well studied (Hui 1951, Delsarte 1978, Gabidulin 1995)

Good codes known
Ralf Kötter
(1963–2009)

Frank Kschischang
(*1962)
Better idea: send (bases of) subspaces instead of matrices

Random linear combinations
Send: basis of m-dim subspace $V \subseteq \mathbb{F}_q^n$

Receive: m vectors in \mathbb{F}_q^n

No errors: received vectors are basis of V

(with high probability)
Send: basis of m-dim subspace $V \subseteq \mathbb{F}^n_q$

Receive: m vectors in \mathbb{F}^n_q

No errors: received vectors are basis of V
 (with high probability)

In practice: $U = \mathcal{H}_k(V) \oplus E$
 $\mathcal{H}_k(V)$ random k-dim subspace of V
 E error-subspace
Send: basis of \(m \)-dim subspace \(V \subseteq \mathbb{F}_q^n \)

Receive: \(m \) vectors in \(\mathbb{F}_q^n \)

No errors: received vectors are basis of \(V \)

(with high probability)

In practice: \(U = \mathcal{H}_k(V) \oplus E \)

\(\mathcal{H}_k(V) \) random \(k \)-dim subspace of \(V \)

\(E \) error-subspace

Decoding possible if \(k \) not too small and \(\dim(E) \) not too big.

Subspace distance: \(d(U, V) = \dim(U) + \dim(V) - 2 \dim(U \cap V) \)
Independent of network structure

Faster transmission

Slower decoding

Few codes known
Current day applications of error-correcting codes:

- Network coding
- Distributed storage
- Code-based crypto
Distributed storage demands different things from codes:

- Erasures instead of errors
- Small size: typically $n \leq 15$
- Reed-Solomon codes do not preform well
Locality: minimize \# nodes accessed during repair
Locality: minimize \# nodes accessed during repair

Bandwidth: minimize total download bandwidth
Locality: minimize \# nodes accessed during repair

Bandwidth: minimize total download bandwidth

Availability: optimize \# repair possibilities
hot data vs. cold data
Current day applications of error-correcting codes:

Network coding

Distributed storage

- Code-based crypto
Public key cryptography

Everyone can encrypt with public function \mathcal{E}

Inverse of \mathcal{E} (decryption) is hard to find

Only feasible with extra information about \mathcal{E}

Examples: factoring, DLP
Peter Shor
(*1959)

1994: algorithm for fast factoring using quantum computer

→ post-quantum cryptography
Robert J. McEliece (*1942)

Harald Niederreiter (*1944)
McEliece crypto system (1978)

Private: Goppa code that can correct t errors
- G generator matrix
- S base change matrix
- P permutation matrix

Public: scrambled generator matrix $G' = S \cdot G \cdot P$
McEliece crypto system (1978)

Private: Goppa code that can correct t errors
- G generator matrix
- S base change matrix
- P permutation matrix

Public: scrambled generator matrix $G' = S \cdot G \cdot P$

Message m, pick error vector e of weight at most t

Encryption: $mG' + e$
Decryption: decode received vector using S, P and G
Code-based crypto demands different things from codes:

- Decoding random linear codes
- Hidden structure
- (Reed-Solomon codes are difficult to scramble)
Current day applications of error-correcting codes:

- Network coding
- Distributed storage
- Code-based crypto
Thank you for your attention.